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g Tensor of Er** centers in axial symmetry
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A scheme for the numerical calculation of Zeeman splitting factors for erbium ions in a
crystalline environment is described. The examples of crystal fields of trigonal or tetragonal
symmetry are presented in some detail. From the results it is concluded that the trace of the g
tensors can be remarkably constant upon distortion from an initially cubic symmetry to a
lower axial symmetry.

1. INTRODUCTION

Over the past forty years an impressive data base on the Zeeman effect of erbium ions in
crystals has been brought about. For more than 70 such centers the g tensors for splitting of
energy levels in a magnetic field have been reported. This paper discusses analysis of these
data of which a summary with references is given in Ref. 1.

The ion Er’* has electronic configuration 4f'' and possesses orbital momentum L = 6 and
spin S = 3/2, resulting in a 52-fold degeneracy. By spin-orbit interaction moments couple to
form levels characterized by quantum number J, which can take the values 15/2, 13/2, 11/2
and 9/2. For erbium, the J = 15/2 level is the ground state. In a crystal the still 16-fold
degeneracy of the ground state is further reduced by formation of doublet and quartet levels
and spin resonance is observed in these states. In cubic symmetry the resonance in states of I
symmetry type has isotropic g value g = 6.8; for the resonance in the I'; doublets the g tensor
is an isotropic g = 6.0. These theoretical predictions have been abundantly confirmed by
experimental observations. In axial symmetry the Zeeman splitting becomes anisotropic and
will be described by a tensor interaction with the principal values g, and g;. Some fifty
spectra of axial centers have been described [1]. Applying perturbation theory, it was shown
already in an early paper [2] that for small axial distortion the trace g, + 2g, of the g tensors
remains constant. Also for a purely axial field the g tensors can be derived by analytical
means. In an axial field the states quantize as |15/2,m;> with m; = +1/2,.....,+15/2. For
instance, for the transition between states in the doublet |15/2,+1/2> the g tensor is normally
quoted as gy = 1.2 and g; = 9.6. Its trace g, + 2g, = 20.4 equals the trace of a I state in the
cubic symmetry, establishing an apparent relation between the two cases. In interpreting
experimental data caution is in order, as both in theory and experiment the sign of a g value is
not easily determined. In the theoretical calculation upper parallel spin state and lower anti-
parallel state should be identifiable. This is straightforward in few cases only, such as, for
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instance, a magnetic field parallel to the axis of crystal field with axial symmetry. Also, in
experiment normally only the energy difference between Zeeman split levels is measured and
is taken as positive. To establish the relation to spin quantization requires a dedicated set up
[3]. If the principal g values of the doublet |15/2,+1/2> have opposite signs the calculated
trace becomes +18.0, equal to the value of a I'; doublet in cubic symmetry. Numerical
calculations as presented in this paper allow the variation of g values continuously to be
followed as a function of axial field between the extreme limits of pure cubic and pure axial
field. This allows to follow the variation of the trace and to detect possible changes of sign.
Analytical treatments which are restricted to the limiting cases do not have this feasibility.

2. OUTLINE OF COMPUTATIONAL METHOD

Energy levels in zero magnetic field are obtained by solving the eigenvalue equation for
the crystal field potentials in the basis set of the 16 states for the J = 15/2 spin-orbit ground
state. A cubic field, valid for T4 symmetry, has the forth- and sixth-order contributions

Veus = 35(x* +y* + 2% - 211 1)
and
Veus = 231(x° + y® + 2% - 315(x* + y* + 2% + 90r°. )

Representative expressions for axial trigonal and tetragonal potentials are, respectively,

Ve =xy +yz+2zx 3)
and
LD “4)

Equivalent crystal-field operators Her acting on spin the states |J,m;> are derived from the
potentials. A general expression will have the form

Her= VedcosB(sina.Heus + cosa.Heys) + sinB.Heel, )

Parameters a and B, with —-90° < a,f < +90°, describe the relative strengths of various
contributions to the potential and V. the total strength.

To obtain the Zeeman effect, the energy due to a magnetic field is added to the crystal field
Hamiltonian. This energy is given, directly in operator form, by

Hue = gius(BuJx + Byly + B,J,). (6)
For the *I;5;, ground state of Er’* the Landé factor has value g = 6/5, which is experimentally

well confirmed to be the applicable value in the cubic I's and I'; states. By this feature of not
adding new freely adjustable parameters, the Zeeman effect is a valuable tool in spectroscopy.
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Figure 1. Crystal-field energies in cubic symmetry of the spin-orbit ground state J = 15/2 of
the Er" ion. States are labeled with their symmetry type I's or I'; for the doublets and (I's);, i =
1, 2 and 3, for the quartets. Parameter a in the range —90° < o < +90° controls the mixing of
fourth- and sixth-order contributions to the cubic crystal field. Parameter Vs> 0.

3. ENERGIES AND g VALUES

In the absence of axial fields, the calculated energy level diagram for cubic symmetry is
given in Figure 1. The results are equivalent to the classical data of Lea, Leask and Wolf [4],
but are presented in a form matching the parameters Vs and a as introduced in Equation (5).
The calculations predict a ground state of I'; symmetry for —-90 < o < —40.4°, for instance,
therefore, for the case of pure 4th-order cubic field (a = —90°), with corresponding g value g =
6.0. In the range —40.4° < o < +54.5° there will be a I's type ground state, with g value g = 6.8.
This includes the case of pure 6th-order cubic crystal field (a = 0°). In the remaining range
+54.5° < a < +90° the ground state is a I's quartet, to be described by an effective spin J = 3/2
with a Hamiltonian including cubic terms and with an anisotropic spectrum.

With an axial field present energy diagrams are given in Figures 2(a) to 2(d), for two
selected cases of cubic potential, @ = —90° and o = 0° and including trigonal and tetragonal
cases. In the lower axial symmetry all degeneracy is lifted and the energy spectrum consists of
eight doublets. Crossings of levels as a function of the relative strength of the axial field,
specified by parameter B, frequently occur. Figures 3(a) to 3(d) present the calculated
principal g values g, and g, for the ground states of the considered cases, as well as tensor
trace g, + 2g,. The sudden changes in ground state properties are related to level crossings at
particular values of B. Figures 3 indicate that for small values of B the trace remains constant
at the value 18.0 for states around the I'; state and at 20.4 near the I'¢ state. The numerical
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Figure 2. Energies of the eight doublet levels for fourth- or sixth-order cubic crystal field
together with a second-order trigonal or tetragonal crystal field calculated from Equation (5)
for (a) a = —90° trigonal, (b) a = 0° trigonal, (c) a = —90°, tetragonal and (d) a = 0°,
tetragonal and positive V. Parameter B in the range —90° < B < +90° controls the mixing of
the cubic and the axial crystal fields.
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Figure 3. Principal g values g, and g, and trace g, + 2g, for transitions in the lowest-energy
doublets. Illustrated cases, (a) a =—90°, trigonal, (b) a = 0°, trigonal, (¢) o = —-90°, tetragonal
and (d) o = 0°, tetragonal, correspond to the energy diagrams shown in Figure 2. Parameter B
in the range —90° < B < +90° controls the mixing of the cubic and the axial crystal fields.
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calculations provide a full confirmation of the early result based on perturbation theory [2],
for both trigonal and tetragonal axial fields, both for states derived from I's or I'7 states in the
cubic symmetry, and for ground or excited states. Positive values of the parameter B
correspond, according to Equation (5), to equal signs of the cubic and axial potentials. In the
range 0° < B < +90° energy curves of the ground state do not tend to cross the first excited
state in the crystal field. If so, then at B = +90° the doublet state |15/2,+1/2> is reached.
Transitions within this doublet in the axial field have the g values g, = 1.2 and g, = 9.6.
Inspection of Figure 3(b) for a = 0° shows that positive values are to be taken for both g, and
g, resulting in the trace 20.4, equal to the trace 3g of the isotropic I's state. For a = —90° the
Figures 3(a) and 3(c) show that upon mixing axial field into the cubic field the principal value
g/ changes sign in the interval 0 < B < +90°. At B = +90° the better choice for g, is therefore
gy = —1.2. The trace g, + 2g; = 18.0 at this point is equal again to the trace 3g of the cubic
symmetry state from which the axial state can be considered to be derived. For negative
values of B, on increasing the axial potential, the doublet |15/2,+15/2> will be reached, or, in
case a level crossing occurs, the doublet |15/2,413/2>. The g tensors for transitions within
these doublets have components g, = 18.0, g, = 0 and gy = 15.6, g, = 0, respectively. It is
then immediately clear that for states derived from I in cubic symmetry, with trace 20.4, the
trace cannot be a constant. In contrast, for the doublet related to the I'; state, with trace 18.0
this might well be the case. Indeed, as Figure 3(c) shows, the case of tetragonal distortion for
a = -90°, reveals a remarkably constant value of its trace also for negative values of B. For
this particular case, over the whole range of B, the trace can decrease a bit below its limiting
value of 18.0, but never falls below 17.95. The more substantial reductions of trace occur in
the region of B adjoining B = —90°. It will be noted, however, that for the corresponding
tensors g; = 0. This implies that the states are EPR silent; these resonances with the reduced
trace are not observable. It adds support to the empirical fact that observed resonances for the
erbium ion its threefold ionized state are characterized by traces in the range from 18.0 to
20.4.
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